3,638 research outputs found

    Pair production of the T-odd leptons at the LHC

    Full text link
    The T-odd leptons predicted by the littlest HiggsHiggs model with T-parity can be pair produced via the subprocesses ggH+Hgg\to \ell^{+}_{H}\ell^{-}_{H}, qqˉH+Hq\bar{q}\to \ell^{+}_{H}\ell^{-}_{H}, γγH+H\gamma\gamma\to \ell^{+}_{H}\ell^{-}_{H} and VVH+H VV \to \ell^{+}_{H}\ell^{-}_{H} (VV=WW or ZZ) at the CERNCERN Large Hadron Collider (LHC)(LHC). We estimate the hadronic production cross sections for all of these processes and give a simply phenomenology analysis. We find that the cross sections for most of the above processes are very small. However, the value of the cross section for the DrellYanDrell-Yan process qqˉH+Hq\bar{q}\to \ell^{+}_{H}\ell^{-}_{H} can reach 270fb270fb.Comment: 12 pages, 2 figure

    Photon-induced production of the mirror quarks from the LHTLHT model at the LHCLHC

    Full text link
    The photon-induced processes at the LHCLHC provide clean experimental conditions due to absence of the proton remnants, which might produce complementary and interesting results for tests of the standard model and for searching of new physics. In the context of the littlest HiggsHiggs model with T-parity, we consider the photon-induced production of the mirror quarks at the LHCLHC. The cross sections for various production channels are calculated and a simply phenomenology analysis is performed by assuming leptonic decays.Comment: 20 pages, 10 figure

    Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

    Full text link
    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.Comment: 14 page

    Constraints on new interactions from neutron scattering experiments

    Full text link
    Constraints for the constants of hypothetical Yukawa-type corrections to the Newtonian gravitational potential are obtained from analysis of neutron scattering experiments. Restrictions are obtained for the interaction range between 10^{-12} and 10^{-7} cm, where Casimir force experiments and atomic force microscopy are not sensitive. Experimental limits are obtained also for non-electromagnetic inverse power law neutron-nucleus potential. Some possibilities are discussed to strengthen these constraints.Comment: 18 pages, 3 figure

    UV friendly T-parity in the SU(6)/Sp(6) little Higgs model

    Full text link
    Electroweak precision tests put stringent constraints on the parameter space of little Higgs models. Tree-level exchange of TeV scale particles in a generic little Higgs model produce higher dimensional operators that make contributions to electroweak observables that are typically too large. To avoid this problem a discrete symmetry dubbed T-parity can be introduced to forbid the dangerous couplings. However, it was realized that in simple group models such as the littlest Higgs model, the implementation of T-parity in a UV completion could present some challenges. The situation is analogous to the one in QCD where the pion can easily be defined as being odd under a new Z2Z_2 symmetry in the chiral Lagrangian, but this Z2Z_2 is not a symmetry of the quark Lagrangian. In this paper we examine the possibility of implementing a T-parity in the low energy SU(6)/Sp(6)SU(6)/Sp(6) model that might be easier to realize in the UV. In our model, the T-parity acts on the low energy non-linear sigma model field in way which is different to what was originally proposed for the Littlest Higgs, and lead to a different low energy theory. In particular, the Higgs sector of this model is a inert two Higgs doublets model with an approximate custodial symmetry. We examine the contributions of the various sectors of the model to electroweak precision data, and to the dark matter abundance.Comment: 21 pages,4 figures. Clarifications added, typos corrected and references added. Published in JHE

    T-parity, its problems and their solution

    Full text link
    We point out a basic difficulty in the construction of little-Higgs models with T-parity which is overlooked by large part of the present literature. Almost all models proposed so far fail to achieve their goal: they either suffer from sizable electroweak corrections or from a breakdown of collective breaking. We provide a model building recipe to bypass the above problem and apply it to build the simplest T-invariant extension of the Littlest Higgs. Our model predicts additional T-odd pseudo-Goldstone bosons with weak scale masses.Comment: 25 pages, 2 appendice

    Dangerous Skyrmions in Little Higgs Models

    Full text link
    Skyrmions are present in many models of electroweak symmetry breaking where the Higgs is a pseudo-Goldstone boson of some strongly interacting sector. They are stable, composite objects whose mass lies in the range 10-100 TeV and can be naturally abundant in the universe due to their small annihilation cross-section. They represent therefore good dark matter candidates. We show however in this work that the lightest skyrmion states are electrically charged in most of the popular little Higgs models, and hence should have been directly or indirectly observed in nature already. The charge of the skyrmion under the electroweak gauge group is computed in a model-independent way and is related to the presence of anomalies in the underlying theory via the Wess-Zumino-Witten term.Comment: 31 pages, 4 figures; v2: minor changes, one reference added, version to appear in JHEP; v3: erratum added, conclusions unchange

    On measurement of top polarization as a probe of ttˉt \bar t production mechanisms at the LHC

    Get PDF
    In this note we demonstrate the use of top polarization in the study of ttˉt \bar t resonances at the LHC, in the possible case where the dynamics implies a non-zero top polarization. As a probe of top polarization we construct an asymmetry in the decay-lepton azimuthal angle distribution (corresponding to the sign of cosϕ\cos\phi_\ell) in the laboratory. The asymmetry is non-vanishing even for a symmetric collider like the LHC, where a positive zz axis is not uniquely defined. The angular distribution of the leptons has the advantage of being a faithful top-spin analyzer, unaffected by possible anomalous tbWtbW couplings, to linear order. We study, for purposes of demonstration, the case of a ZZ' as might exist in the little Higgs models. We identify kinematic cuts which ensure that our asymmetry reflects the polarization in sign and magnitude. We investigate possibilities at the LHC with two energy options: s=14\sqrt{s} = 14 TeV and s=7\sqrt{s} = 7 TeV, as well as at the Tevatron. At the LHC the model predicts net top quark polarization of the order of a few per cent for MZ1200M_{Z'} \simeq 1200 GeV, being as high as 1010 % for a smaller mass of the ZZ' of 700700 GeV and for the largest allowed coupling in the model, the values being higher for the 77 TeV option. These polarizations translate to a deviation from the standard-model value of azimuthal asymmetry of up to about 44% (77%) for 1414 (77) TeV LHC, whereas for the Tevatron, values as high as 1212% are attained. For the 1414 TeV LHC with an integrated luminosity of 10 fb1^{-1}, these numbers translate into a 3σ3 \sigma sensitivity over a large part of the range 500MZ1500500 \lesssim M_{Z'} \lesssim 1500 GeV.Comment: 28 page, LaTeX, requires JHEP style file, 12 figures. Typos corrected and references adde
    corecore